Deteccióndealérgenos de cacahuete…
391
6. REFERENCIAS
1.
Hefle, S. Methods for detecting peanuts in food. Detecting allergens in food; Koppelman,
S.J., Hefle, S.L. Ed.;WoodheadPublising; 2006; p185-‐186.
2.
Morisset, M.; Moneret-‐Vautrin, D A.; Kanny, G.; Guenard, L.; Beaudouin, E.; Flabbee, J.;
Hatahet, R. Thresholds of clinical reactivity to milk, peanut, and sesame in
immunoglobulin E-‐dependent allergies: evaluation by double-‐blind or single-‐blind
placebo-‐controlledoral challenges. Clin. Exp. Allergy
33
, 1046–1051(2003).
3.
Bock, SA.; Muñoz-‐Furlong, A.; Sampson, HA. Fatalities due to anaphylactic reactions to
foods. J. AllergyClin. Immun.
107
, 191-‐193(2001).
4.
Pomés, A.; Helm, RM. ; Bannon, GA. ; Burks, AW. ; Tsay, A.; Chapman, MD. Monitoring
peanut allergen in food products bymeasuring Ara h 1. J. Allergy Clin. Immun.
111
, 640-‐
645(2003).
5.
Stephan, O.; Vieths, S. Development of a Real-‐Time PCR and a Sandwich ELISA for
Detection of Potentially Allergenic Trace Amounts of Peanut (
Arachis hypogaea
) in
ProcessedFoods. J. Agr. FoodChem.
52
, 3754–3760(2004).
6.
Zeleny, R.; Schimmel, H. Towards comparability of ELISA results for peanut proteins in
food: A feasibilitystudy. FoodChem.
123
, 1343-‐1351(2010).
7.
Hird, H.; Lloyd, J.; Goodier, R.; Brown, J.; Reece, P. Detection of peanut using real-‐time
polymerasechainreaction. Eur. FoodRes. Technol.
217,
265-‐268(2003).
8.
Watanabe, T.; Akiyama, H.; Maleki, S.; Yamakawa, H.; Iijima, K.; Yamazaki, F. A specific
qualitative detection method for peanut (Arachis Hypogaea) in foods using polymerase
chainreaction. J. FoodBiochem.
30
, 215-‐233(2006).
9.
Lopez-‐Calleja, IM.; de la Cruz, S.; Pegels, N.; Gonzalez, I.; Garcia, T.;Martin, R. Development
of a real time PCR assay for detection of allergenic trace amounts of peanut (Arachis
hypogaea) inprocessed foods. FoodControl
30
, 480-‐490(2012).
10.
Sun, X.; Guan, L.; Shan, X.; Zhang, Y.; Li, Z. Electrochemical detectionof peanut allergenAra
h 1 using a sensitive ADN biosensor based on stem-‐loop probe. J. Agr. Food Chem.
60
,
10979-‐10984(2012).
11.
Rubio Retama, J.; Sanchez-‐Paniagua, M.; Hervas Perez, JP.; Frutos Cabanillas, G.; Lopez-‐
Cabarcos, E.; Lopez-‐Ruiz, B. Biosensors basedonacrylicmicrogels. Acomparative studyof
immobilizedglucoseoxidaseand tyrosinase. Biosens. Bioelectron.
20,
2268-‐2275(2005).
12.
Alonso-‐Lomillo, M.A.; Dominguez-‐Renedo, O.; Ferreira-‐Goncalves, L.; Arcos-‐Martinez, M.J.
Sensitive enzyme-‐biosensor basedon screen-‐printedelectrodes forOchratoxinA. Biosens.
Bioelectron.
25
, 1333-‐1337(2010)
13.
Venturini Uliana, C.; Olimpio Tognolli, J.; Yamanaka, H. Application of Factorial Design
Experiments to the Development of a Disposable Amperometric ADN Biosensor.
Electroanal.
23,
2607–2615(2011).
14.
Montgomery, D.C; Design and Analysis of Experiments; JohnWiley & Sons, United States,
2009.
15.
Hibbert, DB. Experimental design in chromatography: a tutorial review. J. Chromatogr. B
910
, 2-‐13(2012).
16.
Miranda-‐Castro, R.; Lobo-‐Castañón., MJ.; Miranda-‐Ordieres, AJ.; Tuñón-‐Blanco, P. Stem-‐
Loop ADN probes for the voltammetric determination
of Legionella pneumophila
on
disposable screen-‐printedgoldelectrodes. Electroanal.
21,
267-‐273(2009).
17.
Herne, TM.; Tarlov. MJ. Characterization of ADN probes immobilized on gold surfaces. J.
Am. Chem. Soc.
119
, 8916-‐8920(1997)
18.
Pividori, MI.; Merkoci, A.; Alegret, S. Electrochemical genosensor design: immobiliation of
oligonucleotides onto transducer surfaces and detection methods. Biosens. Bioelectron.
15
, 291-‐303(2000).
19.
Statgraphics Centurion. STATGRAPHICS®. Version XVI. 2012. StatPoint Technologies,
Inc.www.STATGRAPHICS.com
20.
Del Giallo, M.L.; Lucarelli, F.; Cosulich, E.; Pistarino, E.; Santamaria, B.; Marrazza, G.;
Mascini, M. Steric Factors Controlling the Surface Hybridization of PCR Amplified
Sequences. Anal. Chem.
77,
6324-‐6330(2005).
21.
BasicLocal Alignment SearchTool;www.ncbi.nlm.nih.gov/BLAST
22.
Zuker, M. Mfoldweb server for nucleic acid folding and hybridization prediction. Nucleic
AcidsRes.
31
, 3406-‐3415(2003).