Page 35 - Anales_81_1_2015
P. 35
Superoxide Dismutase: a therapeutic candidate for oxidative stress
17. Liu, T, Qian, WJ, Gritsenko, MA, Camp, DG, 32. Castellano, I, Cecere, F, Vendittis, A, Cotugno, R,
Monroe, ME, Moore, RJ. Human plasma N- Chambery, A, Di Maro, A. Rat Mitochondrial
glycoproteome analysis by immunoaffinity Manganese Superoxide Dismutase: Amino Acid
subtraction, hydrazide chemistry, and mass Positions Involved in Covalent Modifications,
spectrometry. Proteome Res 2005; 4: 2070-2080. Activity, and Heat Stability. Biopolymers 2009; 91:
1215-26.
18. Oberley, L. Free radicals and diabetes. Free Rad Biol
Med 1988; 5: 13–124. 33. Candas, D, Fan, M, Nantajit, D, Vaughan, A, Murley,
J, Woloschak, G. CyclinB1/Cdk1 phosphorylates
19. Williamson, JR, Chang, K, Frangos, M. mitocondrial antioxidant MnSOD in cell adaptive
Hyperglycemic pseudohypoxia and diabetic response to radiation stress. Journal of Molecular Cell
complications. Diabetes 1993; 42: 801–813. Biology 2013; 5: 166–175.
20. Szaleczky, E, Prechl, J, Fehér, J, Somogyi, A. 34. Ubersax, J, Woodbury, E, Quang, P. Targets of the
Alterations in enzymatic antioxidant defense in cyclin-dependent kinase Cdk1. Nature 2003; 425:
diabetes mellitus-a rational approach. Postgrad Med J 859–864.
2000; 75: 13-17.
35. Rudner, A, Murray, A. Phosphorylation by Cdc28
21. Tagami, S, Kondo, T, Yoshida, K, Hirokawa, J, activates the Cdc20-dependent activity of the
Ohtsuka, Y, Kawakami, Y. Effect of insulin on anaphase-promoting complex. J Cell Biol 2000; 149:
impaired antioxidant activities in aortic endothelial 1377–1390.
cells from diabetic rabbits. Metabolism 1992; 41:
1053–1058. 36. Stenlund, P, Tibell, L. Chimeras of human
extracellular y intracellular superoxide dismutases.
22. Oberley, L, Bueftner, G. Role of Superoxide Analysis of structure y function of the individual
Dismutase in Cancer: A Review. Cancer Research domains. Protein Engineering 1999; 12: 319–325.
1979; 39: 1141-1149.
37. Summerer, D, Chen, S, Wu, N, Deiters, A, Chin, J,
23. Peskin, A, Koen, Y, Zbarsky, I. Superoxide dismutase Schultz, P. A genetically encoded fluorescent amino
y glutathione peroxidase activities in tumors. Febs acid. PNAS 2006; 103: 9785-9789.
Left 1977; 78: 41-45.
38. Gurney, M. et al. Motor neuron degeneration in mice
24. Sahu, S, Oberley, L, Stevens, R, Riley, E. Superoxide that express a human Cu,Zn superoxide dismutase
dismutase activity of Ehrlich ascites tumor cells. J Nat mutation. Science 1994; 264: 1772–1775.
I Cancer Inst 1977; 58: 1125-1128.
39. Banci, L, Bertini, I, Boca, M, Girotto, S, Martinelli,
25. Yamanaka, N, Ota, K, Utsumi, K. Changes in M, Valentine, J.S. et al. SOD1 and amyotrophic lateral
superoxide dismutase activity using development, sclerosis: mutations and oligomerization. Plos One
aging and transformation. In: Hayishi, O, Asada, K, 2008; 3: e1677.
Eds. Biochemical and medical aspects of active
oxygen. Tokyo: University of Tokyo Press 1977; pp. 40. Seijffers, R, Zhang, J, Matthews, J, Chen, A,
183-90. Tamrazian, E, Babaniyi, O, et al. ATF3 expression
improves motor function in the ALS mouse model by
26. Cullen, J, Weydert, C, Hinkhouse, M. The Role of promoting motor neuron survival and retaining muscle
Manganese Superoxide Dismutase in the Growth of innervation. PNAS 2013; 111: 1622-7.
Pancreatic Adenocarcinoma. Cancer Reserch 2003;
63: 1297-1303. 41. Weisiger, R, Fridovich, I. Superoxide Dismutase.
Organelle Specificity. J Biol Chem 1973; 248: 3582-
27. Fernández, J, Oliva, B, Tejeda, Y, Astrada, S, Garay, 3592.
H, Reyes, O. The Antitumor Peptide CIGB-552
Increases COMMD1 and Inhibits Growth of Human 42. Uchida, K, Kawakishi, S. Identification of Oxidized
Lung Cancer Cells. J Amino Acids 2013; 251398. Histidine Generated at the Active Site of Cu,Zn-
Superoxide Dismutase Exposed to H2O2. J Biol Chem
28. Edwards, S, Tolkovsky, A. Characterization of 1994; 269: 2405-2410.
apoptosis in cultured rat sympathetic neurons after
nerve growth factor withdrawal. J Cell Biol 1994; 43. Veronese, F, Largajolli, R, Boccú, E, Benassi, C,
124: 965-972. Schiavon, O, et al. Surface modification of proteins
activation of monomethoxy-polyethylene glycols by
29. Greenlund, L, Deckwerth, T, Johnson, E. Superoxide phenylchloroformates and modification of
Dismutase Delays Neuronal Apoptosis: A Role for ribonuclease and superoxide dismutase. Applied
Reactive Oxygen Species in Programmed Neuronal Biochemistry and Biotechnology, 1985; 11: 141-152.
Death. Neuron 1995; 14: 303-315.
44. Liu, T, Beckman, J, Freeman, B, Hogan, E, Hsu, C.
30. Araujo, J, Breuer, P, Dieringer, S, Krauss, S, Dorn S, Polyethylene glycol-conjugated superoxide dismutase
Zimmermann, K. FOXO4-dependent upregulation of and catalase reduce ischemic brain injury. AJP-Heart
superoxide dismutase-2 in response to oxidative stress 1989; 256: 589-593.
is impaired in spinocerebellar ataxia type 3. Human
Molecular Genetics 2011; 20: 2928-41. 45. Fujita, T, Nishikawa, M, Tamaki, C, Takakura, Y,
Hashida, M, et al. Targeted delivery of human
31. Lee, J, Shin, J, Hwang, S, Gwag, B, McKee, A, recombinant superoxide dismutase by chemical
Junghee Lee. MST1 functions as a key modulator of modification with mono- and polysaccharide
neurodegeneration in a mouse model of ALS. PNAS. derivatives. JPET 1992; 263: 971-978.
2013; 110: 12066-71.
@Real Academia Nacional de Farmacia. Spain 35
17. Liu, T, Qian, WJ, Gritsenko, MA, Camp, DG, 32. Castellano, I, Cecere, F, Vendittis, A, Cotugno, R,
Monroe, ME, Moore, RJ. Human plasma N- Chambery, A, Di Maro, A. Rat Mitochondrial
glycoproteome analysis by immunoaffinity Manganese Superoxide Dismutase: Amino Acid
subtraction, hydrazide chemistry, and mass Positions Involved in Covalent Modifications,
spectrometry. Proteome Res 2005; 4: 2070-2080. Activity, and Heat Stability. Biopolymers 2009; 91:
1215-26.
18. Oberley, L. Free radicals and diabetes. Free Rad Biol
Med 1988; 5: 13–124. 33. Candas, D, Fan, M, Nantajit, D, Vaughan, A, Murley,
J, Woloschak, G. CyclinB1/Cdk1 phosphorylates
19. Williamson, JR, Chang, K, Frangos, M. mitocondrial antioxidant MnSOD in cell adaptive
Hyperglycemic pseudohypoxia and diabetic response to radiation stress. Journal of Molecular Cell
complications. Diabetes 1993; 42: 801–813. Biology 2013; 5: 166–175.
20. Szaleczky, E, Prechl, J, Fehér, J, Somogyi, A. 34. Ubersax, J, Woodbury, E, Quang, P. Targets of the
Alterations in enzymatic antioxidant defense in cyclin-dependent kinase Cdk1. Nature 2003; 425:
diabetes mellitus-a rational approach. Postgrad Med J 859–864.
2000; 75: 13-17.
35. Rudner, A, Murray, A. Phosphorylation by Cdc28
21. Tagami, S, Kondo, T, Yoshida, K, Hirokawa, J, activates the Cdc20-dependent activity of the
Ohtsuka, Y, Kawakami, Y. Effect of insulin on anaphase-promoting complex. J Cell Biol 2000; 149:
impaired antioxidant activities in aortic endothelial 1377–1390.
cells from diabetic rabbits. Metabolism 1992; 41:
1053–1058. 36. Stenlund, P, Tibell, L. Chimeras of human
extracellular y intracellular superoxide dismutases.
22. Oberley, L, Bueftner, G. Role of Superoxide Analysis of structure y function of the individual
Dismutase in Cancer: A Review. Cancer Research domains. Protein Engineering 1999; 12: 319–325.
1979; 39: 1141-1149.
37. Summerer, D, Chen, S, Wu, N, Deiters, A, Chin, J,
23. Peskin, A, Koen, Y, Zbarsky, I. Superoxide dismutase Schultz, P. A genetically encoded fluorescent amino
y glutathione peroxidase activities in tumors. Febs acid. PNAS 2006; 103: 9785-9789.
Left 1977; 78: 41-45.
38. Gurney, M. et al. Motor neuron degeneration in mice
24. Sahu, S, Oberley, L, Stevens, R, Riley, E. Superoxide that express a human Cu,Zn superoxide dismutase
dismutase activity of Ehrlich ascites tumor cells. J Nat mutation. Science 1994; 264: 1772–1775.
I Cancer Inst 1977; 58: 1125-1128.
39. Banci, L, Bertini, I, Boca, M, Girotto, S, Martinelli,
25. Yamanaka, N, Ota, K, Utsumi, K. Changes in M, Valentine, J.S. et al. SOD1 and amyotrophic lateral
superoxide dismutase activity using development, sclerosis: mutations and oligomerization. Plos One
aging and transformation. In: Hayishi, O, Asada, K, 2008; 3: e1677.
Eds. Biochemical and medical aspects of active
oxygen. Tokyo: University of Tokyo Press 1977; pp. 40. Seijffers, R, Zhang, J, Matthews, J, Chen, A,
183-90. Tamrazian, E, Babaniyi, O, et al. ATF3 expression
improves motor function in the ALS mouse model by
26. Cullen, J, Weydert, C, Hinkhouse, M. The Role of promoting motor neuron survival and retaining muscle
Manganese Superoxide Dismutase in the Growth of innervation. PNAS 2013; 111: 1622-7.
Pancreatic Adenocarcinoma. Cancer Reserch 2003;
63: 1297-1303. 41. Weisiger, R, Fridovich, I. Superoxide Dismutase.
Organelle Specificity. J Biol Chem 1973; 248: 3582-
27. Fernández, J, Oliva, B, Tejeda, Y, Astrada, S, Garay, 3592.
H, Reyes, O. The Antitumor Peptide CIGB-552
Increases COMMD1 and Inhibits Growth of Human 42. Uchida, K, Kawakishi, S. Identification of Oxidized
Lung Cancer Cells. J Amino Acids 2013; 251398. Histidine Generated at the Active Site of Cu,Zn-
Superoxide Dismutase Exposed to H2O2. J Biol Chem
28. Edwards, S, Tolkovsky, A. Characterization of 1994; 269: 2405-2410.
apoptosis in cultured rat sympathetic neurons after
nerve growth factor withdrawal. J Cell Biol 1994; 43. Veronese, F, Largajolli, R, Boccú, E, Benassi, C,
124: 965-972. Schiavon, O, et al. Surface modification of proteins
activation of monomethoxy-polyethylene glycols by
29. Greenlund, L, Deckwerth, T, Johnson, E. Superoxide phenylchloroformates and modification of
Dismutase Delays Neuronal Apoptosis: A Role for ribonuclease and superoxide dismutase. Applied
Reactive Oxygen Species in Programmed Neuronal Biochemistry and Biotechnology, 1985; 11: 141-152.
Death. Neuron 1995; 14: 303-315.
44. Liu, T, Beckman, J, Freeman, B, Hogan, E, Hsu, C.
30. Araujo, J, Breuer, P, Dieringer, S, Krauss, S, Dorn S, Polyethylene glycol-conjugated superoxide dismutase
Zimmermann, K. FOXO4-dependent upregulation of and catalase reduce ischemic brain injury. AJP-Heart
superoxide dismutase-2 in response to oxidative stress 1989; 256: 589-593.
is impaired in spinocerebellar ataxia type 3. Human
Molecular Genetics 2011; 20: 2928-41. 45. Fujita, T, Nishikawa, M, Tamaki, C, Takakura, Y,
Hashida, M, et al. Targeted delivery of human
31. Lee, J, Shin, J, Hwang, S, Gwag, B, McKee, A, recombinant superoxide dismutase by chemical
Junghee Lee. MST1 functions as a key modulator of modification with mono- and polysaccharide
neurodegeneration in a mouse model of ALS. PNAS. derivatives. JPET 1992; 263: 971-978.
2013; 110: 12066-71.
@Real Academia Nacional de Farmacia. Spain 35