Page 36 - Anales_81_1_2015
P. 36
46. Hirano, T, Todoroki, T, Morita, R, Kato, S, Ito, Y, Mario Riera Romo
Kim, K, et al. Anti-inflammatory effect of the 59. Ellerby, L, Nishida, C, Nishida, F, Yamanaka, S,
conjugate of superoxide dismutase with the copolymer
of divinyl ether and maleic anhydride against rat re- Dunn, B, Valentine, J. et al. Encapsulation of proteins
expansion pulmonary edema. J Control Release 1997; in transparent porous silicate glasses prepared by the
48: 131-9. sol-gel method. Science 1992; 255: 1113-1115.
60. Vorauer-Uhl, K, Furnschlief, E, Wagner, A, Ferko, B,
47. Sakurai, K, Miyazaki, K, Kodera, Y, Nishimura, H, Katinger, H. Topically applied liposome encapsulated
Shingu, M, Inada, Y. Antiinflammatory activity of superoxide dismutase reduces postburn wond size and
superoxide dismutase conjugated with sodium edema formation. Eur J Pharm Sci 2001; 14: 63-7.
hyaluronate. J Glycoconj 1997; 14: 723-8. 61. Muscoli, C, Cuzzocrea, S, Riley, P, Zweier, J,
Thiemermann, C, Wang, Z, et al. On the selectivity of
48. Ogino, T, Inoue, M, Ando, Y, Awai, M, Maeda, H, superoxide dismutase mimetics and its importance in
Morino, Y. Chemical modification of superoxide pharmacological studies. Br J Pharmacol 2003; 140:
dismutase: Extension of plasma half-life of the 445-60.
enzyme through its reversible binding to the 62. Pluta J, Karolewicz B. Evaluation of bioadhesive
circulating albumin. International Journal of Peptide properties of excipients containing lipophilic
and Protein Research 1988; 32: 153–159. adjuvants. Polim Med 2003; 33: 3-16.
63. Domínguez, A, Valdivia, A, Hernández, J, Villalonga,
49. Valdivia, A, Domínguez, A, Pérez, Y, Caballero, J, R. Biocompatibilidad in vitro de superóxido dismutasa
Hernández, Y, Villalonga, R. Improved en interacción con polímero e hidrogeles de
pharmacological properties for superoxide dismutase carboximetilcelulosa ensayado con fibroblastos
modified with Mannan. Biotechnology and Applied humanos. Biotecnología Aplicada 2004; 21: 218-223.
Biochemistry 2006; 44: 159-165.
@Real Academia Nacional de Farmacia. Spain
50. Domínguez, A, Valdivia, A, Caballero, J, Martínez, G,
Hernández, Y, Schacht, E, et al. Improved
pharmacological properties for superoxide dismutase
modified with carboxymethycellulose. Journal of
Bioactive and Compatible Polymers 2005; 20: 557-70.
51. Ge, B, Scheller, F, Lisdat, F. Electrochemistry of
immobilized CuZnSOD and FeSOD and their
interaction with superoxide radicals. Biosensors and
Bioelectronics 2001; 18: 295-302.
52. Endo, K, Miyasaka, T, Mochizuki, S, Aoyagi, S,
Himi, N, Asahara, H, et al. Development of a
superoxide sensor by immobilization of superoxide
dismutase. Sensors and Actuators 2002; 83: 30-34.
53. Beissenhirtz, M, Scheller, F, Viezzoli, M, Lisdat, F.
Engineered Superoxide Dismutase Monomers for
Superoxide Biosensor Applications. Anal Chem 2006;
78: 928-935.
54. Villalonga, R, Cao, R, Fragoso, A, Damiao, A, Ortiz,
P, Caballero, J. Supramolecular assembly of b-
cyclodextrin-modified gold nanoparticles and Cu,Zn
superoxide dismutase on catalase. J Mol Cat 2005; 35:
79-85.
55. Salimi, A, Noorbakhsh, A, Rafiee-Pour, H.A,
Ghourchian, H. Direct Voltammetry of Copper,Zinc-
Superoxide Dismutase Immobilized onto
Electrodeposited Nickel Oxide Nanoparticles:
Fabrication of Amperometric Superoxide Biosensor.
Electroanalysis 2012; 23: 683-691.
56. Sheng, L, Zhang, X, Song, C. Preparation and
characterization of a thermostable enzyme (Mn-SOD)
immobilized on supermagnetic nanoparticles. Applied
Microbiology and Biotechnology 2012; 96: 123-132.
57. Campanella, L, Favero, G, Tomassetti, M. Superoxide
Dismutase Biosensors for Superoxide Radical
Analysis. Analytical Letters 1999; 32: 2559-2581.
58. Emregul, E. Development of a new biosensor for
superoxide radicals. Analytical and Bioanalytical
Chemistry 2005; 383: 947-954.
36
Kim, K, et al. Anti-inflammatory effect of the 59. Ellerby, L, Nishida, C, Nishida, F, Yamanaka, S,
conjugate of superoxide dismutase with the copolymer
of divinyl ether and maleic anhydride against rat re- Dunn, B, Valentine, J. et al. Encapsulation of proteins
expansion pulmonary edema. J Control Release 1997; in transparent porous silicate glasses prepared by the
48: 131-9. sol-gel method. Science 1992; 255: 1113-1115.
60. Vorauer-Uhl, K, Furnschlief, E, Wagner, A, Ferko, B,
47. Sakurai, K, Miyazaki, K, Kodera, Y, Nishimura, H, Katinger, H. Topically applied liposome encapsulated
Shingu, M, Inada, Y. Antiinflammatory activity of superoxide dismutase reduces postburn wond size and
superoxide dismutase conjugated with sodium edema formation. Eur J Pharm Sci 2001; 14: 63-7.
hyaluronate. J Glycoconj 1997; 14: 723-8. 61. Muscoli, C, Cuzzocrea, S, Riley, P, Zweier, J,
Thiemermann, C, Wang, Z, et al. On the selectivity of
48. Ogino, T, Inoue, M, Ando, Y, Awai, M, Maeda, H, superoxide dismutase mimetics and its importance in
Morino, Y. Chemical modification of superoxide pharmacological studies. Br J Pharmacol 2003; 140:
dismutase: Extension of plasma half-life of the 445-60.
enzyme through its reversible binding to the 62. Pluta J, Karolewicz B. Evaluation of bioadhesive
circulating albumin. International Journal of Peptide properties of excipients containing lipophilic
and Protein Research 1988; 32: 153–159. adjuvants. Polim Med 2003; 33: 3-16.
63. Domínguez, A, Valdivia, A, Hernández, J, Villalonga,
49. Valdivia, A, Domínguez, A, Pérez, Y, Caballero, J, R. Biocompatibilidad in vitro de superóxido dismutasa
Hernández, Y, Villalonga, R. Improved en interacción con polímero e hidrogeles de
pharmacological properties for superoxide dismutase carboximetilcelulosa ensayado con fibroblastos
modified with Mannan. Biotechnology and Applied humanos. Biotecnología Aplicada 2004; 21: 218-223.
Biochemistry 2006; 44: 159-165.
@Real Academia Nacional de Farmacia. Spain
50. Domínguez, A, Valdivia, A, Caballero, J, Martínez, G,
Hernández, Y, Schacht, E, et al. Improved
pharmacological properties for superoxide dismutase
modified with carboxymethycellulose. Journal of
Bioactive and Compatible Polymers 2005; 20: 557-70.
51. Ge, B, Scheller, F, Lisdat, F. Electrochemistry of
immobilized CuZnSOD and FeSOD and their
interaction with superoxide radicals. Biosensors and
Bioelectronics 2001; 18: 295-302.
52. Endo, K, Miyasaka, T, Mochizuki, S, Aoyagi, S,
Himi, N, Asahara, H, et al. Development of a
superoxide sensor by immobilization of superoxide
dismutase. Sensors and Actuators 2002; 83: 30-34.
53. Beissenhirtz, M, Scheller, F, Viezzoli, M, Lisdat, F.
Engineered Superoxide Dismutase Monomers for
Superoxide Biosensor Applications. Anal Chem 2006;
78: 928-935.
54. Villalonga, R, Cao, R, Fragoso, A, Damiao, A, Ortiz,
P, Caballero, J. Supramolecular assembly of b-
cyclodextrin-modified gold nanoparticles and Cu,Zn
superoxide dismutase on catalase. J Mol Cat 2005; 35:
79-85.
55. Salimi, A, Noorbakhsh, A, Rafiee-Pour, H.A,
Ghourchian, H. Direct Voltammetry of Copper,Zinc-
Superoxide Dismutase Immobilized onto
Electrodeposited Nickel Oxide Nanoparticles:
Fabrication of Amperometric Superoxide Biosensor.
Electroanalysis 2012; 23: 683-691.
56. Sheng, L, Zhang, X, Song, C. Preparation and
characterization of a thermostable enzyme (Mn-SOD)
immobilized on supermagnetic nanoparticles. Applied
Microbiology and Biotechnology 2012; 96: 123-132.
57. Campanella, L, Favero, G, Tomassetti, M. Superoxide
Dismutase Biosensors for Superoxide Radical
Analysis. Analytical Letters 1999; 32: 2559-2581.
58. Emregul, E. Development of a new biosensor for
superoxide radicals. Analytical and Bioanalytical
Chemistry 2005; 383: 947-954.
36