Envejecimiento cerebral normal y patológico …
537
brain and cognitive changes in the very old with Alzheimer disease. Neurology 77, 713-‐21
(2011).
74. Villain, N.; Chételat, G.; Grassiot, B.; Bourgeat, P.; Jones, G.; Ellis, K. A.; Ames, D.; Martins, R.
N.; Eustache, F.; Salvado, O.; Masters, C. L.; Rowe, C. C.; Villemagne, V. L. AIBL Research
Group. Regional dynamics of amyloid-‐β deposition in healthy elderly, mild cognitive
impairment and Alzheimer's disease: a voxelwise PiB-‐PET longitudinal study. Brain
135
,
2126-‐2139 (2012).
75. Okello, A.; Koivunen, J.; Edison, P.; Archer, H. A.; Turkheimer, F. E.; Någren, K.; Bullock, R.,
Walker, Z.; Kennedy, A.; Fox, N. C.; Rossor, M. N.; Rinne, J. O.; Brooks, D. J. Conversion
ofamyloid positive and negative MCI to AD over 3 years: an 11C-‐PIB PET study. Neurology
73
, 754-‐760 (2009).
76. Toledano, A.; Álvarez, M. I.; López-‐Rodríguez, A. B.; Toledano-‐Díaz, A.; Fernández-‐Verdecia,
C. I. Does Alzheimer's disease exist in all primates? Alzheimer pathology in non-‐human
primates and its pathophysiological implications (I). Neurologia
27
, 354-‐69 (2012)
[también versión en español]
77. Toledano, A.; Álvarez, M. I.; López-‐Rodríguez, A. B.; Toledano-‐Díaz, A.; Fernández-‐Verdecia,
C. I. Does Alzheimer's disease exist in all primates? Alzheimer pathology in non-‐human
primates and its pathophysiological implications (II) Neurologia.
29
, 42-‐55 (2014)
[también versión en español]
78. Hardy, J.; Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and
problems on the road to therapeutics. Science
19
, 353-‐356 (2002).
79. Toledano, A.; Álvarez, M. I.; Carmona, P.; Toledano-‐Díaz, A.; Fernández-‐Verdecia, C. I.
Alzheimer pathology in non-‐human primates and its pathophysiological implications. En:
Primates. Classification, evolution and behavior
. Hughes E. F.; Hill M. Eds. Nova Sciences
Pub, New York, 2012; p 71-‐110.
80. Bons, N.; Rieger, F.; Prudhomme, D.; Fisher, A.; Krause, K. H. Microcebus murinus: a useful
primate model for human cerebral aging and Alzheimer’s disease? Genes Brain Behav
5
,
120-‐130 (2006).
81. Voytko, M. L.; Tinker, G. P. Cognitive function and its neural mechanism in nonhuman
primate models of aging Alzheimer’s diseases, and menopause. Front Biosci
9
, 1899-‐1914
(2004).
82. McGuire, M. T. The St Kitts vervet (Cercopithecus aethiops). J Med Primatol
3
, 285-‐297
(1974).
83. Lemere, C. A.; Beierschmitt, A.; Iglesias, M.; Spooner, E. T.; Bloom, J.K.; Leverone, J. F.
Alzheimer’s disease abeta vaccine reduces central nervous system abeta levels in a non-‐
human primate, the Caribbean vervet. Am J Pathol
165
, 83-‐97 (2004).
84. Rosen, R. F.; Farberg, A. S.; Gearing, M.; Dooyema, J.; Long, P. M.; Anderson, D. C. Tauopathy
with paired helical filaments in an aged chimpanzee. J Comp Neurol
509
, 259-‐270 (2008).
85. LaFerla, F. M.; Green, K. N. Animal models of Alzheimer disease. Cold Spring Harb Perspect
Med,
2 (11),
a006320. doi: 10.1101/cshperspect.a006320 (2012).
86. Scheffler, K.; Stenzel, J.; Krohn, M.; Lange, C.; Hofrichter, J.; Schumacher, T.; Brüning, T.;
Plath, A. S.; Walker, L.; Pahnke, J. Determination of spatial and temporal distribution of
microglia by 230nm-‐high-‐resolution, high-‐throughput automated analysis reveals
different amyloid plaque populations in an APP/PS1 mouse model of Alzheimer's disease.
Curr Alzheimer Res
8
,781-‐788 (2011).
87. Bales, K.R. The value and limitations of transgenic mouse models used in drug discovery
for Alzheimer's disease: an update. Expert Opin Drug Discov.
7
, 281-‐297 (2012).
88. Howlett, D. R. APP transgenic mice and their application to drug discovery. Histol
Histopathol
26
, 1611-‐1632 (2011).
89. Boche, D.; Denham, N.; Holmes, C.; Nicoll, J. A. Neuropathology after active Abeta42
immunotherapy: implications for Alzheimer's disease pathogenesis. Acta Neuropathol
120,
369-‐384 (2010).
90. Fjell, A.; McEvoy, M.; Holland, L.; D.; Dale, A. M.; Walhovda, K. B. The Alzheimer’s disease
Neuroimaging I
f aging, amyloid and
Alzheimer’s dis
. Prog Neurobiol (en
prensa) (2014).
91. Fischer, F. U.;
ructural global brain
network prope
22, 9 (2014). doi:
10.1371/journal.pone.0086258.